ar X iv : m at h / 03 08 02 3 v 2 [ m at h . Q A ] 1 3 O ct 2 00 3 MONOMIAL HOPF ALGEBRAS
نویسندگان
چکیده
Let K be a field of characteristic 0 containing all roots of unity. We classified all the Hopf structures on monomial K-coalgebras, or, in dual version, on monomial K-algebras.
منابع مشابه
ar X iv : m at h / 06 10 98 4 v 1 [ m at h . C O ] 3 1 O ct 2 00 6 COLORED POSETS AND COLORED QUASISYMMETRIC FUNCTIONS
The colored quasisymmetric functions, like the classic quasisymmetric functions, are known to form a Hopf algebra with a natural peak subalgebra. We show how these algebras arise as the image of the algebra of colored posets. To effect this approach we introduce colored analogs of P -partitions and enriched P -partitions. We also frame our results in terms of Aguiar, Bergeron, and Sottile’s the...
متن کاملar X iv : 0 90 9 . 17 08 v 1 [ m at h . Q A ] 9 S ep 2 00 9 HOPF STRUCTURES ON MINIMAL HOPF QUIVERS
In this paper we investigate pointed Hopf algebras via quiver methods. We classify all possible Hopf structures arising from minimal Hopf quivers, namely basic cycles and the linear chain. This provides full local structure information for general pointed Hopf algebras.
متن کاملar X iv : m at h / 02 08 03 3 v 2 [ m at h . Q A ] 2 5 N ov 2 00 3 CLUSTER ALGEBRAS AND POISSON GEOMETRY
We introduce a Poisson variety compatible with a cluster algebra structure and a compatible toric action on this variety. We study Poisson and topological properties of the union of generic orbits of this toric action. In particular, we compute the number of connected components of the union of generic toric orbits for cluster algebras over real numbers. As a corollary we compute the number of ...
متن کاملar X iv : m at h / 02 10 19 9 v 1 [ m at h . Q A ] 1 4 O ct 2 00 2 A locally trivial quantum Hopf bundle
We describe a locally trivial quantum principal U (1)-bundle over the quantum space S 2 pq which is a noncommutative analogue of the usual Hopf bundle. We also provide results concerning the structure of its total space algebra (irreducible *-representations and topological K-groups) and its Galois aspects (Galois property, existence of a strong connection, non-cleftness).
متن کاملar X iv : m at h / 02 08 03 3 v 1 [ m at h . Q A ] 5 A ug 2 00 2 CLUSTER ALGEBRAS AND POISSON GEOMETRY
We introduce a Poisson variety compatible with a cluster algebra structure and a compatible toric action on this variety. We study Poisson and topological properties of the union of generic orbits of this toric action. In particular, we compute the number of connected components of the union of generic toric orbits for cluster algebras over real numbers. As a corollary we compute the number of ...
متن کامل